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Island size distributions in submonolayer growth with mobile islands and breakup
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Island growth in the submonolayer regime with mobile islands and breakup is studied by computer simu-
lations. It is shown that during the initial stages of growth, a scaling description similar to irreversible growth
applies, but eventually the growth attains a quasistationary state where aggregation is affected by breakup and
a new scaling behavior occurs. A generalized scaling description that bridges the initial and final stages of
growth is presented and its validity is confirmed by simulati¢64.063-651X98)12009-3

PACS numbg(s): 07.05-t, 68.55—a, 68.35.Fx, 36.40.Sx

Island growth on surfaces during submonolayer deposithe island size aB(i,j) (i +j)“ and only binary breakup is
tion has received considerable attention, because it is th&lowed, which with— 1/2<«a<0 is a reasonable choice for
basic element of all further growth. By studying the scalingiBAD [16]. With these definitionsK(i,j)=Kye(i,j) and
properties of island size distributions valuable information ofF (i j)=F,(i,j), with ¢(i,j)=i"#+j * and ¢(i,j)= (i
microscopic surface processes can be obtdihet]. The pri- +)® are homogeneous kernels of ordeg and e, respec-
mary interest has been on the role of adatom diffusion ORively [10,11, and withR=K,/® and k=F,/K, they are
growth [1-3], but recently also the more complicated casespq input parameters specifying the model.

of growth with mobile island$4—6] and reversible growth We have simulated island growth as described by Egs.

with adatom detachmen,8] have been studied. An inter- . :
esting special case that has received little attention is islana)y using the particle coalescence metiB&M) [17]. In the

growth under conditions where islands are mobile and disso- llowing we give only a brief overview of the method, be-
ciation or breakup of islands occur. This problem is also ofcause its application on aggregatiphi7] and aggregation

) . s with breakup(without sourc¢[10,11,13 is explained in de-
practical interest, because it is assumed to be one of tht%il elsewhere. In the PCM, islands are defined to be point-

mechanisms affecting growth in ion beam assisted depositiom(e and they occupy single lattice sites. When two clusters

Siﬁv?gtg{here energetic ion beams are utilized in thin fIImi andj jump to the same lattice site, they aggregate to a new

Island growth with mobile islands and breakup is modele luster + with a probab_|l|ty proporuonal t(K(.' 1) [1.7]'
) he particle at a given lattice site is allowed to jump either to
here as an aggregation-breakup procAss Aj=A;,; of

clusters of sizé and | with the rates of aggregation and the nearest neighbor sites orifie NN rulg or to any site on
breakup specified by reaction kernetgi,|) andF(i.}), re- the lattice(the MF rule, which corresponds to the mean field

spectively. Extending the well known approach used for (MF) limit. By using the NN rule we can take into account

sourceless aggregation-breakup problErd—13 we write 4he spatial fluctuations ing, as explained in more detail in
the rate equations for the areal densityof islands of size Ref. [17]. Similar rules are used also for breakup by placing

<=1 in the form one of th_e fragments either in a nearest neigf(btbd)_ site or

- at any site chosen random({F) [10,11]. The lattice size
was chosen to be 5600 and averages were carried over
by 100-200 runs. Some of the calculations were performed
for smaller lattices to rule out the finite size effects. The MF
. limit results of PCM were checked by solving in some rep-

2 . ) resentative cases the rate equations numerically using an
A [K(s,])nsn;—F(s,j)nsy ], (1) adaptive Adam’s method. The results for the NN rule were
checked by repeating some of the calculations with the ki-
netic Monte CarladKMC) method for point islands by gen-

where the source is the deposition flux of adgtoms in units eralizing the hybrid simulation method introduced by Bartelt
of monolayers per seconlL/s). The aggregation kernel for and Evang1]

mobile islands with a diffusion constal; is given by the
Smoluchowski formul& (i, j) = (D; + D;) [14] where the de-
pendence on the island size can be omitted without loss
generality for point islandf6]. In cases of interest to us the
diffusion coefficients of the islands follow an inverse power
law D;eci ~# with w in the range ¥ u<2 [15], which gives
the aggregation kerneK(i,j)oc(i~#+j~#). The breakup
rate F(i,j) of islands of sizes=i+]j is taken to depend on

dns

B+~ S (K .
- Post g & [KGDn =R ]

Scaling of the island size distributions; is discussed
onveniently by introducing the distribution function
(s,0)=sny(6)/ 6, which at the coveragé=Pt=2=,_,Sng

gives the probability that an atom selected at random belongs
to an island of sizes [2,12]. After the initial stage the scale
for the distributionng is specified by the average sizéf)
=3>.1Sp(s,0) and then the distribution attains the scaling
form p(s,#)=s"g(s/s) [1,2], where the scaling function
g(x) with x=s/s becomes independent of the coveragje
*Electronic address: ismo.koponen@helsinki.fi and of the parameterR=K,/® and k=Fy/K; [2,12]. At
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0.6 TABLE I. Scaling exponenty, B, v, andé and the numerical
constanta), and{ (as defined in the texbbtained from the simu-
lations. The value ofy is obtained from the MF relatioy=(«

+ u+2)" 1. The pair (u,«) specifies the homogeneity exponents of
a=-"2 the aggregation and breakup kernels, respectively, and they are the
input parameters of the model.

u= p=1

() y B Y 3 o '
o=0 (2,0) 0250 087 052 30 222 132
(2-3 0286 088 053 27 271 134
(1,0) 0333 112 063 20 238 150
(1,-3 0400 113 059 16 310 1.63

-2 -1 0 1 2 -1 0 1 2
log,,® 0.5 1P<R=<2x10°. The validity of the generalized scal-
ing is confirmed by the observation that in all cases the
FIG. 1. Scaling functiony(®) for the models with homogeneity scaled data collapse to a single curve. Only during the tran-
exponents f,a)=(2,0) and (2-1/2) (left pane} and (x,«)  sition that occurs a® = 6/6.~1 are there deviations from
=(1,0) and (1;-1/2) (right pane). In all casesy=(a+u+2)""  the scaling functions(®). At large valuesd >1 the scaling
gives the best data collapse. In the steady si&€)— o, With 5o fynction attains a constant valug, given in Table | and it
given in Table I. The.exponerﬁ repprted in Table | is obtained obeys the relationy,= (a/b)¥, wherea andb are calculated
from the power law fits to the scaling functiof(©)=0” at®  ,maerically by usingy(x), to be specified later on. The scal-
<1, wherew=4-y. ing of the total island densitjl was examined by plotting
the functionZ(0) =sN/ 6. After the initial transient staghl
attains a scaling form, which is signaled Byapproaching a
constant value. These values are given in Table | and they
are comparable to values obtained numerically from the

this stage of growth the total areal density of islands
=>4 1Ng also follows a scaling form and obeys the relation

?Nzga, where the coefficientz=[dxx g(x) depends
only on the functiorg(x) [2,12]. function g(x).

The ‘island size distribution is determined completely ™ yhe steady stat®>1 data collapse is obtained with the
by g(x) provided that the average sizeis specified. It is scaling exponeny=(a+ u+2)" %, as predicted by the MF
known that_ in irreversible growth the average Sizetheory[lo,lﬂ. The exponenw= B—y measured from the
scales as sxR?0#, where =2/3 in point island scaling plot yields the dynamic exponeggiven in Table I.
models [1] and the scaling exponeny is related to Foru=2 andu=1 we obtain~0.9 and 1.1, respectively,
the surface diffusion processg®,4—-8. On the other which due to island mobility are larger thg=2/3 for the
hand, in sourceless aggregation with breakup the scaling gfoint island model with mobile adatoms orly]. The scal-

s with respect the relative breakup rate obeys the relatiofing exponentsy reported in Table | are consistent with val-
s« Y(alb)Y, where the scaling exponery depends U€S found in models where detachment occurs efigjiyout
only on the homogeneity exponents and it is given by2'® systematically larger than values obtained in previous

y=(a+u+2)"! [10,11. The coefficientsa and b as
derived by Sorensen, Zhang, and Tayl@ZT) [12] are 2
given by the integrala= fdx[dyxy®(x,y)g(x)g(y) and

b= fdxJdyxye(X,y)g(x+y). The SZT method can be ap-
plied also to the present problem, and it can be shown that a
generalized scaling description that bridges these two regions
of growth is (compare with the scaling description in
Ref.[11])

a(x)

S(0)=(k/6.)YOYY(O); O=6l6,, (2)

where(0)=0¢ with o= -y for O<1 and #(0)— ¢,
with ¢yoc(a/b)Y for ®>1, and the crossover between these
two stages of growth is determined by paramet&r
=R~ 7"*x7Y |n the later stage where breakup affects the

growth s(©)=®Y and it thus increases with the coverage

much slower than in irreversible growth. However, within X
the present model breakup is not dominant enough to keep  FiG. 2. Scaling functiorg(x) = sp(s, §) with x=s/s for model
constant. (u,@)=(2,0) without breakupk=0 (solid line), with «=10""

~ The functiony(®) for the generalized scaling is given in (@) andx=10"° (+). In all casesk=2x 10° and the coverage is
Fig. 1 for several PCM simulations by using the MF and NN §=0.25. In the inset the same distributions are shown on a log-log
rules, and with parameters in the range 1€ x<10"°and  scale.
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FIG. 3. Scaling functiong)(x) for model (u,a)=(2,0) with

FIG. 4. Scaling functiongy(x) for models (,a)=(2,0) and
k=10"% and R=2x1Cf, and k=10"° with R=0.5x1CF, g 9(x) b 0)=(2,0)

o dll . (1,0) and (2;-0.5) and (1;-0.5). Averages over simulation results
1x10°, and 2x1(P. Distributions are given for coverage8 ¢, coverageg/=0.1, 0.15, 0.2, and 0.25 are given by unconnected

— ] S, i

=0.1, 0.15, 0.20, and 0.25. The §{x)>x’exp(—cx) with the ex-  gympols. The statistical variation of the averages is of the size of
ponenté given in Table | drawn in the figure is indistinguishable ¢, symbols. Solid lines display the fits with exponedtgiven in
from the simulation results. The inset displays the results of KMCrgpe |.

simulations @), PCM simulations with NN(+), and MF (X)

rules and numerical solutions to the rate equatighis solid line o o o
for k=105 and R=1x1CP. The fit is given by the thick solid limits of statistical variation, as demonstrated for the model

line. Due to good data collapse the different results are nearly in{2,0) in the inset of Fig. 3. Equally good agreement was
distinguishable from the figure. obtained for the other cases, which suggests that spatial fluc-
tuations inng have only a negligible role in growth with
KMC simulations with mobile islands only where values in breakup. This is in agreement with previous findings for
range 0.35 y<0.42 were obtainef4,5]. sourceless aggregation with brealfu®,11 and for aggre-
The scaling functiong(x) for the model f«,a)=(2,0) gation with mobile cluster§l7,18, but in contrast to irre-
displayed in Fig. 2 for the relative breakup rate in the rangeversible island growth, where spatial correlations, due to the
0<k<10° demonstrates howg(x) gradually broadens size dependence of the propensity for islands to capture dif-
with increasingk. In the inset of Fig. 2 the distributions are fusing adatoms affect the growth in a fundamental \\Waly
shown on a log-log scale, where the distribution of small Limiting scaling functiongy(x) were found to exist for all
island sizes and its disappearance with increasiigbetter models studied, and they are shown in Fig. 4. It is obvious
seen. It is obvious that witk— 0 the distributiong(x) ap-  that each functiorg(x) is specific to the given model and
proaches continuously the distribution obtained for aggregaeach case is described by a clearly different distribution.
tion only. On the other hand, with an increasing breakup ratédowever, only the leading pak<1 of the distribution is
« the distributiong(x) becomes less sensitive toand its  affected by breakup and island diffusion. The exponént
scaling is improved until it finally attains a limiting shape. (given in Table } specifying the slope of the leading edge
This behavior is demonstrated in Fig. 3 for moded, &) depends on both homogeneity exponemtand . and with
=(2,0), where it becomes obvious thgix) follows scaling  decreasing mobility (increasing «) the slope becomes
with R and 6. The limiting scaling function in Fig. 3 has the steepefvalue of § increasesas expected on the basis of the
form g(x) <x’exp(—cx), which is similar to the scaling func- MF theory wheres also increases witja [11]. A decrease in
tion obtained in aggregation with breakup without sourcebreakup has a similar effect of increasing the values.of
[10,11. However, the value 0 given in Table | is clearly Inspection of results given in Table | suggest that within the
smaller than the MF predictiod=2+ n obtained for the present model and range of homogeneity exponents, the scal-
sourceless cadd 1], but this is to be expected because theing exponents3 and y are sensitive mainly to island mobil-
deposition of adatom&ource increases the number of small ity, whereasy and § depend also on the breakup.
islands. In summary, we have demonstrated that for island growth
The effect of the spatial fluctuations i was checked by with island breakup the rate equations give an accurate de-
performing the PCM simulations with the MF and NN mod- scription of the growth and predict correctly the island size
els. Only for models without breakup and with the smallestdistributions. A generalized scaling description was pre-
breakup ratec=10"" the spatial fluctuations affect the dis- sented, which describes the initial, irreversible stage of
tributions. Fork=10"% any difference between the MF and growth and the final stage, where aggregation is affected by
NN models disappeared. These results of PCM simulationbreakup. Scaling exponents and scaled size distributions
were confirmed by independent calculations with the KMCwere found to be sensitive to island mobility and breakup,
method and by numerical solutions of Ed) for models  which makes it possible to obtain rather detailed and unam-
(2,0), (2,-1/2), and (1,0). All these independent methodsbiguous information on these surface processes by examin-
give scaled distributions, which are very similar within the ing the scaling properties of island size distributions.
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